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Executive Summary 
 

The idea of controlling machines not by manual control, but by mere “thinking” (i.e., the brain activity of 
human subjects) has fascinated humankind since ever, and researchers working at the crossroads of computer 
science, neurosciences, and biomedical engineering have started to develop the first prototypes of brain-
computer interfaces (BCI) over the last decade or so (Dornhege et al., 2006; Millán, 2002; Nicolelis, 2001; 
Wickelgren, 2003; Wolpaw et al., 2002). Such a kind of BCI is a natural way to augment human capabilities 
by providing a new interaction link with the outside world and is particularly relevant as an aid for paralyzed 
humans, although it also opens up new possibilities in human-robot interaction for able-bodied people. 

Recently, researchers have been able to train monkeys, who had implanted tens of microelectrodes in their 
brain, to control a robot arm (Carmena et al, 2003; Mussallam et al., 2004; Serruya et al., 2002; Taylor et al., 
2002). For humans, however, non-invasive methods based on EEG signalsi are preferable because of ethical 
concerns and medical risks. Despite their poor signal-to-noise ratio, our recent experiments have shown for 
the first time that EEG is sufficient for humans to continuously control a mobile robot similar to a wheelchair 
(Millán et al., 2004a, 2004b). Two human subjects learned to drive the robot between rooms in a house-like 
environment by mental control only. Furthermore, mental control was only marginally worse than manual 
control on the same task. 

In this study we will first review the field of brain-computer interfaces (BCI), with emphasis on non-invasive 
BCIs as this one is the most promising for space applications. Most non-invasive BCI systems use 
electroencephalogram (EEG) signals; i.e., the electrical brain activity recorded from electrodes placed on the 
scalp. Non-invasive EEG-based BCIs can be classified as “evoked” or “spontaneous”. An evoked BCI 
exploits a strong characteristic of the EEG, the so-called evoked potential, which reflects the immediate 
automatic responses of the brain to some external stimuli. Evoked potentials are, in principle, easy to pick up 
with scalp electrodes and two different evoked potentials have been widely explored in the field of BCI, 
namely P300 (Allison & Pineda, 2003; Bayliss, 2003; Farwell & Donchin, 1988) and steady-state visual 
evoked potential (SSVEP). (Gao et al., 2003; Middendorf et al., 2000; Sutter, 1992). The necessity of 
external stimulation does, however, restrict the applicability of evoked potentials to a limited range of tasks. 
In our view, a more natural and suitable alternative for interaction is to analyze components associated with 
spontaneous “intentional” mental activity. This is particularly the case when controlling robotics devices. 

Spontaneous BCIs are based on the analysis of EEG phenomena associated with various aspects of brain 
function related to mental tasks carried out by the subject at his/her own will. Such a kind of BCI can exploit 
two kinds of spontaneous, or endogenous, brain signals, namely slow potential shifts (Birbaumer et al., 1999; 
Blankertz et al., 2003) or variations of rhythmic activity (Anderson, 1997; Babiloni et al., 2000; Birch et al., 
2002; Blankertz et al., 2005; Millán, 2003; Millán et al., 2004a, 2004b; Pfurtscheller & Neuper, 1997; 2001; 
Roberts & Penny, 2000; Wolpaw & McFarland, 2004; Wolpaw et al., 2000). It should be noted that eye 
movements and breathing may cause considerable artefacts in slow potentials while muscular tension—in 
face and neck—can generate artifacts in higher frequencies. Also, EEG rhythms have response latencies of 
about 0.5 seconds whereas other EEG components—e.g., slow potentials and event-related potentials such as 
P300 and SSVEP—have response latencies of two or more seconds. 

A critical issue for the development of a BCI is training—i.e., how users learn to operate the BCI. Some 
groups have demonstrated that some subjects can learn to control their brain activity through appropriate, but 
lengthy, training in order to generate fixed EEG patterns that the BCI transforms into external actions 
(Birbaumer et al., 1999; Wolpaw et al., 2000). In this case the subject is trained over several months to 
modify the amplitude of their EEG signals. Other groups follow machine-learning approaches to train the 
classifier embedded in the BCI (Anderson, 1997; Blankertz et al., 2003; Millán et al., 2004a, 2004b; 

                                                      
i The electroencephalogram (EEG) is the brain electrical activity recorded from electrodes placed on the scalp. 



Pfurtscheller and Neuper, 2001; Roberts and Penny, 2000). Most of these approaches are based on a mutual 
learning process where the user and the brain interface are coupled together and adapt to each other. This 
should accelerate the training time. 

After reviewing other issues such as operational protocols (synchronous or asynchronous) and ways to 
improve the quality of the EEG signals (in particular, spatial filters), we will describe some of the current 
applications of BCI that augment people’s communication capabilities (Birbaumer et al., 1999; Farwell & 
Donchin, 1988; Millán, 2003; Millán et al., 2004a; Obermaier et al., 2003; Scherer et al., 2004; Wolpaw et 
al., 2000), provide new forms entertainment (Millán, 2003), and also enable the operation of physical devices 
(Millán et al., 2004a, 2004b; Pfurtscheller & Neuper, 2001). Then, we will discuss some foreseen 
improvements necessary for bringing BCI technology out of the lab. In this respect, a critical issue is how to 
improve the robustness of BCIs with the goal of making it a more practical and reliable technology. 

Finally, we will discuss possible applications of BCIs in the space environment, where astronauts are subject 
to extreme conditions and could greatly benefit from direct mental teleoperation of external semi-automatic 
manipulators or robotic agents—for instance, mental commands could be sent without any output/latency 
delays, as it is the case for manual control in microgravity conditions. Such space applications will range 
from critical, and non-critical, robotic applications to environment control and even to monitoring 
astronauts’ cognitive state. 
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1. Introduction 
There is a growing interest in the use of brain signals for communication and 
operation of devices, in particular for physically disabled people. Brain 
states can be detected and translated into actions such as selecting a letter 
from a virtual keyboard, playing a video game, or moving a robot arm 
(Birbaumer et al., 1999; Blankertz et al., 2005; Carmena et al, 2003; Chapin 
et al., 1999; Farwell & Donchin, 1988; Kennedy et al., 2000; Millán, 2003; 
Millán et al., 2004a, 2004b; Mussallam et al., 2004; Obermaier et al., 2003; 
Pfurtscheller & Neuper, 2001; Scherer et al., 2004; Serruya et al., 2002; 
Taylor et al., 2002; Wolpaw & McFarland, 2004; Wolpaw et al., 2000). Such 
devices, which do not require the user to perform any physical action, are 
called brain-computer interfaces (BCI) or brain-machine interfaces1 (for 
reviews see (Dornhege et al., 2006; Millán, 2002; Nicolelis, 2001; 
Wickelgren, 2003; Wolpaw et al., 2002)). It is worth noting that, although 
BCI prototypes have only been developed recently, the basic ideas were 
already put forward in the 1970s. Initial successful experiments were based 
on the analysis of brain electrical activity—the visual evoked potential—
generated in response to changes in gaze direction (Vidal, 1977) (see also 
(Gao et al., 2003; Middendorf et al., 2000; Sutter, 1992)). 

 
Figure 1: General architecture of a brain-computer interface for controlling 

robotics devices 

Such a kind of BCI is a natural way to augment human capabilities by 
providing a new interaction link with the outside world and is particularly 
relevant as an aid for paralyzed humans, although it also opens up new 
possibilities in human-robot interaction for able-bodied people. Figure 1 
                                                      
1 Although brain-computer interfaces (BCI) and brain-machine interfaces (BMI) 
refer to the same general kind of interface technology, it is agreed that the latter are 
based upon invasive signals whereas the former relies upon non-invasive signals. 
For this reason the term BCI will be used in this report. 
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shows the general architecture of a brain-actuated robot. Brain electrical 
activity is recorded with a portable device. These raw signals are first 
processed and transformed in order to extract some relevant features that are 
then passed on to some mathematical models (in principle, neural networks). 
This model computes, after some training process, the appropriate mental 
commands to control robotic devices, from robot arms to vehicles. Finally, 
visual feedback, and maybe other kinds such as haptic stimulation, informs 
the subject about the performance of the brain-actuated robot so that she can 
learn appropriate mental control strategies and make rapid changes to 
achieve the task. 

A BCI may monitor brain activity via a variety of methods, which can be 
coarsely classified as invasive and non-invasive. Most non-invasive BCI 
systems use electroencephalogram (EEG) signals; i.e., the electrical brain 
activity recorded from electrodes placed on the scalp. The main source of the 
EEG is the synchronous activity of thousands of cortical neurons. Measuring 
the EEG is a simple noninvasive way to monitor electrical brain activity, but 
it does not provide detailed information on the activity of single neurons (or 
small brain areas). Moreover, it is characterized by small signal amplitudes 
(a few µVolts) and noisy measurements (especially if recording outside 
shield rooms). 

Besides electrical activity, neural activity also produces other types of 
signals, such as magnetic and metabolic, that could be used in a BCI. 
Magnetic fields can be recorded with magnetoencephalography (MEG), 
while brain metabolic activity—reflected in changes in blood flow—can be 
observed with positron emission tomography (PET), functional magnetic 
resonance imaging (fMRI), and optical imaging. Unfortunately, such 
alternative techniques require sophisticated devices that can be operated only 
in special facilities. Moreover, techniques for measuring blood flow have 
long latencies and thus are less appropriate for interaction. 

In invasive BCI systems the activity of single neurons (their spiking rate) is 
recorded from microelectrodes implanted in the brain. In a series of 
experiments with rats and monkeys, researchers have monitored different 
areas of the cortex related to execution and planning of movements—motor, 
premotor and posterior parietal cortex. From a real-time analysis of the 
activity of the neuronal population, it has been possible to determine the 
animal’s movement intention (Chapin et al., 1999; Mussallam et al., 2004), 
predict the monkey’s hand trajectory (Carmena et al, 2003; Taylor et al., 
2002), and to drive a computer cursor to desired targets (Serruya et al., 2002; 
Taylor et al., 2002). In human patients, first steps towards invasive 
approaches have been made (Kennedy et al., 2000)Error! Reference source 
not found.. One of the patients was eventually able to drive a cursor and 
write messages. His performance, however, was similar to that achieved with 
noninvasive BCI systems (Millán, 2002). Less invasive approaches are based 
on the analysis of electrocorticogram (ECoG) signals from electrodes 
implanted under the skull (Graimann et al., 2003; Leuthardt et al., 2004). 
ECoG signals are less noisy than EEG signals and have also a higher spatial 
resolution. The former, however, still requires surgical operations. 

4 
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Given the risks generated by permanent surgically implanted devices in the 
brain, and the associated ethical concerns, we will concentrate in the sequel 
only on non-invasive approaches, in particular electrical brain signals as 
measured by EEG. 
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2. EEG-based Brain-Computer Interfaces: 
Methodologies 
For certain stimuli, such as flashed images and lights, the EEG exhibits a 
strong characteristic signal, the so-called evoked potential, which reflects the 
immediate automatic responses of the brain to those external stimuli. Evoked 
potentials are, in principle, easy to pick up with scalp electrodes and have 
been used in the context of BCIs (Allison & Pineda, 2003; Bayliss, 2003; 
Farwell & Donchin, 1988; Gao et al., 2003; Middendorf et al., 2000; Sutter, 
1992). The necessity of external stimulation does, however, restrict the 
applicability of evoked potentials to a limited range of tasks. In our view, a 
more natural and suitable alternative for interaction is to analyze components 
associated with spontaneous “intentional” mental activity. This is 
particularly the case when controlling robotics devices. 

2.1 Evoked BCIs 
Evoked BCIs depend on the brain’s response to external events. Two 
different evoked potentials have been widely explored in the field of BCI, 
namely P300 and steady-state visual evoked potential (SSVEP). 

 
Figure 2: Grand average evoked potentials across many trials and subjects over the 

Pz electrode. Time 0 is stimulus onset. Note the large P300 peak (actually 
happening at around 400 ms) for the desired infrequent choice that does not appear 

for undesired choices. 

P300 is a potential evoked by an awaited infrequent event that appears at 
centro-parietal locations along the midline of the scalp (see Section 2.3 for 
details of EEG electrodes placement). As illustrated in Figure 2, it is a 
positive wave peaking at around 300 ms after task-relevant stimuli. The 
amplitude of the P300 depends on the frequency of stimulus occurrence—
less frequent stimuli produce larger response—and task relevance. 

6 
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Traditionally, P300 has been used to develop virtual keyboards (Allison & 
Pineda, 2003; Farwell & Donchin, 1988), but recently this same potential 
has also been the basis for brain-actuated control of a virtual reality system 
(Bayliss, 2003) and of a wheelchair (Rebsamen et al., 2006). In order to 
evoke the P300, subjects are given a sufficiently large number of options 
(e.g., letters of the alphabet or icons) from which they choose one. Then, 
options are flashed several times each in a random order. Finally, it is 
possible to determine which choice the subject intended as a target simply by 
selecting the stimulus that elicits the largest P300. 

Visual evoked potentials (VEP) reflect electrophysiological mechanisms 
underlying the processing of visual information in the brain and vary in 
response to changes in visual stimuli. Steady-state visual evoked potentials 
(SSVEP) are VEP induced by a stimulus repeated at a rate higher than 6 Hz. 
SSVEP is composed of a series of components whose frequencies are exact 
integer multiples of the stimulus frequency. In other words, fixating a 
stimulus flashing at 6-30 Hz evokes a similar rhythm—the SSVEP—in the 
visual cortex. This implies that SSVEP-based BCIs depend on muscular 
control of gaze direction for their operation, whereas all other kinds of BCI 
systems do not depend on the brain’s normal output pathways of peripheral 
nerves and muscles. The principle of operation is then quite simple (Gao et 
al., 2003; Middendorf et al., 2000; Sutter, 1992). Multiple targets are placed 
on a visual panel, each flickering at a different frequency. When a subject 
gazes at a certain target, a SSVEP is induced in the brain whose fundamental 
frequency is equal to the flickering frequency of the target. Figure 3 shows 
an example of SSVEPs induced by two different targets. SSVEP is measured 
at electrodes over the visual cortex back in the scalp; i.e., at occipital 
locations such as O1 and O2 (see Section 2.3 for details of EEG electrodes 
placement). 

 
Figure 3: Amplitude spectra of SSVEPs induced by a 6.83-Hz (thick) and a 7.03-Hz 
(thin) visual stimulation. The peaks at these frequencies, as well as at their second 

harmonics, are clearly identified (reproduced from (Gao et al., 2003)) 

2.2 Spontaneous BCI 
Spontaneous BCIs are based on the analysis of EEG phenomena associated 
with various aspects of brain function related to mental tasks carried out by 
the subject at his/her own will. Such a kind of BCI can exploit two kinds of 
spontaneous, or endogenous, brain signals, namely slow potential shifts or 
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variations of rhythmic activity. It should be noted that eye movements and 
breathing may cause considerable artefacts in slow potentials while muscular 
tension—in face and neck—can generate artifacts in higher frequencies. 
Also, EEG rhythms have response latencies of about 0.5 seconds whereas 
other EEG components—e.g., slow potentials and event-related potentials 
such as P300 and SSVEP—have response latencies of two or more seconds. 

2.2.1 Slow Potentials 
Some researchers measure slow cortical potentials (SCP)—whose negative 
amplitudes are related to the overall preparatory excitation level of a given 
cortical network, the more negative the more active—over the top of the 
scalp at electrode Cz (Birbaumer et al., 1999; Hinterberger et al., 2004). 
Attentional modulation seems to constitute the cognitive strategy in the 
physiological regulation of SCP. Birbaumer’s team has widely shown that 
healthy subjects as well as severely paralyzed patients can learn to self-
control their SCPs through operant conditioning; i.e., when they are provided 
with visual or auditory feedback of their SCPs and when SCP changes in the 
desired direction (positive or negative) are positively reinforced. As depicted 
in Figure 4, a trial typically consists of a 2-s preparatory phase in which the 
cursor remains stationary on the screen and an active feedback phase lasting 
between 2–8 s in which the cursor moves at constant speed from left to right, 
vertically controlled by the SCP amplitude. The onsets of these two phases 
are signaled by a high- and a low-pitched tone, respectively. For each trial, 
the user is required to produce either a negative or a positive SCP shift. The 
SCP amplitude shifts are referenced to the final SCP value of the 2-s 
preparatory phase immediately before the feedback starts. At the end of the 
feedback phase, the SCP shift is classified as a negative or positive response 
according to the integral of the SCP shift across the feedback period. 

 
Figure 4: Experimental protocol used by Birbaumer’s team to measure slow 

cortical potentials 

Another possibility is to monitor slow premovement potentials such as the 
Bereitschaftspotential (BP), or readiness potential (Blankertz et al., 2003; 
2005). As shown in Figure 5, BP is a slow negative shift over the 
controlateral motor cortical area starting at 500-600 msec before the onset of 
the movement. As this is a slow potential, its dynamics is better observed if a 
low-pass filter—say, below 4 Hz—is applied before analysis of the EEG. 
Also, it is not necessary to use any baseline to compute it, what speeds up 
the decisions as it is not necessary to use long trials (as it is the case for SCP 
and synchronous protocols discussed in Section 0). 

8 
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Figure 5: Grand averages of event-related movement potentials from self-paced left 

and right finger movements. Lateralization of the BP is clearly visible, a 
controlateral negativation, for electrodes C3 and C4 over the motor cortex, left and 

right, respectively (reproduced from (Blankertz et al., 2003)) 

2.2.2 Rhythmic Activity 
Apart from analyzing nonoscillatory event-related potentials in the temporal 
domain such as SCP and BP, other groups look at local variations of EEG 
rhythms in the frequency domain. Populations of neurons can form complex 
networks whereby feedback loops are responsible for the generation of 
oscillatory activity. In general, the frequency of such oscillations becomes 
slower with increasing number of synchronized neuronal assemblies (Singer, 
1993). A particularly significant EEG rhythm can be recorded from the 
central region of the scalp overlying the sensorimotor cortex during the 
imagination of body movements (Babiloni et al., 2000; Birch et al., 2002; 
Blankertz et al., 2005; Pfurtscheller & Neuper, 1997; 2001; Wolpaw & 
McFarland, 2004; Wolpaw et al., 2000). 

 
Figure 6: Grand average ERD/ERS curves recorded over left and right motor 
cortex (electrodes C3 and C4, respectively) during imagined hand movements. 

Positive and negative deflections, with respect to the reference baseline (see Figure 
7), represent a band power increase (ERS) and decrease (ERD), respectively. The 
alpha band corresponds to the Rolandic µ rhythm (reproduced from (Pfurtscheller 

& Neuper, 2001)) 

In this respect, there exist two main paradigms. Pfurtscheller’s team works 
with event-related desynchronization (ERD) (Pfurtscheller & Neuper, 2001). 
ERD is the basis of a number of BCIs (Babiloni et al., 2000; Blankertz et al., 
2005). Imagination of hand movement gives rise to an amplitude 
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suppression—ERD—of Rolandic µ (8-12 Hz) and central β (13-28 Hz) 
rhythms over the controlateral primary hand motor cortical area 
(Pfurtscheller & Neuper, 1997). As shown in Figure 6 this imagination-
related ERD shows different time courses in the two bands. In the µ band the 
ERD recovers to baseline level within a few seconds. On the other hand, the 
central β activity displays a short-lasting ERD followed by an amplitude 
increase—event-related synchronization (ERS). 

In Pfurtscheller’s approach, the ERD is computed at fixed time intervals 
after the subject is commanded to imagine specific movements of the limbs. 
Figure 7 illustrates the typical protocol (Pfurtscheller & Neuper, 2001). The 
experimental task is to imagine either right-hand or left-hand movement 
depending on a visually presented cue stimulus. The subject fixates on a 
computer monitor 150 cm in front of her/him. Each trial is 8 s long and starts 
with the presentation of a fixation cross at the center of the monitor, 
followed by a short warning tone (beep) at 2000 ms. At 3000 ms, the 
fixation cross is overlaid with an arrow at the center of the monitor for 1250 
ms, pointing either to the left or to the right. Depending on the direction of 
the arrow, the subject is instructed to imagine, e.g., a movement of the left or 
the right hand. Recognition of the executed mental task is performed in a 
fixed time window from 3250 to 4250 ms. The sequence of “left” and 
“right” trials, as well as the duration of the breaks between consecutive trials 
(ranging between 500 and 2500 ms), is randomized throughout each 
experimental run. Finally, to compute the ERD/ERS, the EEG is first 
bandpass filtered and it is estimated the band power—using, for instance the 
Welch periodogram algorithm or an autoregressive model. Then, the power 
components are referred to the corresponding values of the band power of 
the reference baseline and transformed in dB—i.e., taking the logarithm of 
the division. 

 
Figure 7: The cue stimulus in form of an arrow indicates the type of imagination. 
The reference period used as a baseline for calculation of ERD/ERS is indicated 

(reproduced from (Pfurtscheller & Neuper, 2001)) 

Alternatively, Wolpaw and coworkers analyze continuous changes in the 
amplitudes of the µ (8-12 Hz) or β (13-28 Hz) rhythms (Wolpaw & 
McFarland, 2004; Wolpaw et al., 2000). In this way, it is not necessary to 

10 
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refer the band power amplitude to any baseline, thus speeding up the 
decision process. In Wolpaw’s approach, people learn to control µ or β 
rhythm amplitude and use that amplitude to move a cursor in one or two 
dimensions to targets on a computer screen. A linear equation translates µ (or 
β) rhythm amplitude into a cursor movement. Figure 8 illustrates the control 
achieved by a well-trained user. In each trial, lasting several seconds, users 
move the cursor along a randomly selected direction and trials are 
interleaved with short resting periods (e.g., 1 s). 

 
Figure 8: Frequency spectra of EEG recorded over sensorimotor cortex of a trained 

subject when the target is at the bottom (solid) or at the top (dashed) of the video 
screen. The main difference between the two spectra is in the 8–12 Hz rhythm band 
(and, to a lesser extent, in an 18–23 Hz rhythm band) (reproduced from (Wolpaw et 

al., 2000)) 

Finally, in addition to motor-related rhythms, some groups explore also other 
cognitive mental tasks (Anderson, 1997; Millán, 2003; Millán et al., 2004a, 
2004b; Roberts & Penny, 2000). This approach is grounded in a number of 
neurocognitive studies that have found that different mental tasks—such as 
mental rotation of geometric figures (Yoshino et al., 2000), arithmetic 
operations (Chochon et al., 1999), or language (Petersen et al., 1988)—
activate local cortical areas to a different extent. In particular, Millán’s team 
analyzes also continuous variations of EEG rhythms, but not only on specific 
frequency bands. Their approach aims at discovering task-specific spatio-
frequency patterns embedded in the continuous EEG signal—i.e., EEG 
rhythms over local cortical areas that differentiate the mental tasks. 

2.3 Operant Conditioning & Machine Learning 
Wolpaw et al. (2000) as well as Birbaumer et al. (1999) have demonstrated 
that some subjects can learn to control their brain activity through 
appropriate, but lengthy, training in order to generate fixed EEG patterns that 
the BCI transforms into external actions. In both cases the subject is trained 
over several months to modify the amplitude of either the SCP or µ/β 
rhythm, respectively. Other groups follow machine-learning approaches to 
train the classifier embedded in the BCI (Anderson, 1997; Blankertz et al., 
2003; Millán et al., 2004a, 2004b; Pfurtscheller and Neuper, 2001; Roberts 
and Penny, 2000). Most of these approaches are based on a mutual learning 
process where the user and the brain interface are coupled together and adapt 
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to each other. This should accelerate the training time. Thus, Millán’s 
approach allows subjects to achieve good performances in just a few hours 
of training in the presence of feedback (Millán, 2003; Millán et al., 2004a). 
In this case, analysis of learned EEG patterns confirms that for a subject to 
operate satisfactorily his/her personal BCI, the latter must fit the individual 
features of the former. 

Most of these works deal with the recognition of just 2 mental tasks 
(Babiloni et al., 2000; Birbaumer et al., 1999; Birch et al., 2002; Blankertz et 
al., 2003; Pfurtscheller and Neuper, 2001; Roberts and Penny, 2000), or 
report classification errors bigger than 15% for 3 or more tasks (Kalcher et 
al., 1996; Anderson, 1997). An exception is Millán’s approach that achieves 
error rates below 5% for 3 mental tasks, but correct recognition is 70% 
(Millán, 2003; Millán et al., 2004a). In the remaining cases (around 20-
25%), the classifier doesn’t respond, since it considers the EEG samples as 
uncertain. It is also worth noting that some of the subjects who follow 
Wolpaw’s approach are able to control their µ/β rhythm amplitude at 4 
different levels and/or have simultaneous control of two rhythms. 

The incorporation of rejection criteria to avoid making risky decisions, such 
in the case of Millán’s approach, is an important concern in BCI. From a 
practical point of view, a low classification error is a critical performance 
criterion for a BCI; otherwise users can become frustrated and stop utilizing 
the interface. The system of Roberts and Penny (2000) applies Bayesian 
techniques for rejection purposes too. 

2.4 Synchronous vs. Asynchronous BCI 
EEG-based BCIs are limited by a low channel capacity. Most of the current 
systems have a channel capacity below 0.5 bits/s (Wolpaw et al., 2002). One 
of the main reasons for such a low bandwidth is that they are based on 
synchronous protocols where EEG is time-locked to externally paced cues 
repeated every 4-10 s and the response of the BCI is the average decision 
over this period (Birbaumer et al., 1999; Obermaier, Müller and 
Pfurtscheller, 2001; Pfurtscheller & Neuper, 2001; Roberts & Penny, 2000; 
Wolpaw & McFarland, 2004; Wolpaw et al., 2000). Such synchronous 
protocols facilitate EEG analysis since the starting time of mental states are 
precisely known and differences with respect to background EEG activity 
can be amplified. Unfortunately, they are slow and BCI systems that use 
them normally recognize only 2 mental states, independently of the number 
of electrodes from which EEG is measured. In a synchronous experimental 
protocol, the subject must follow a fixed repetitive scheme to switch from a 
mental task to the next. A trial consists of two parts. A first cue warns the 
subject to get ready and, after a fixed period of several seconds, a second cue 
tells the subject to undertake the desired mental task for a predefined time. 
The EEG phenomena to be recognized are time-locked to the last cue and the 
BCI responds with the average decision over the second period of time. 

On the contrary, other BCIs utilize more flexible asynchronous protocols 
where the subject makes self-paced decisions on when to stop doing a 
mental task and start immediately the next one (Birch et al., 2002; Millán, 
2003; Millán et al., 2004a, 2004b; Roberts and Penny, 2000; Scherer et al., 
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2004). In such asynchronous protocols the subject can voluntarily change the 
mental task being executed at any moment without waiting for external cues. 
The time of response of an asynchronous BCI can be below 1 second. For 
instance, in Millán’s approach the system responds every 1/2 second. The 
rapid responses of asynchronous BCIs, together with their performance, give 
a theoretical channel capacity between 1 and 1.5 bits/s. 

It is worth noting that the use of statistical rejection criteria, discussed in 
Section 2.3, also helps to deal with an important aspect of a BCI, namely 
“idle” states where the user is not involved in any particular mental task. In 
an asynchronous protocol, idle states appear during the operation of a brain-
actuated device while the subject does not want the BCI to carry out any 
action. Although the classifier is not explicitly trained to recognize those idle 
states, the BCI can process them adequately by giving no response. 

2.5 Spatial Filtering 
EEG signals are characterized by a poor signal-to-noise ratio and spatial 
resolution. Their quality is greatly improved by means of a Surface 
Laplacian (SL) derivation, which requires a large number of electrodes 
(normally 64-128). The SL estimate yields new potentials that represent 
better the cortical activity originated in radial sources immediately below the 
electrodes. The superiority of SL-transformed signals over raw potentials for 
the operation of a BCI has been demonstrated in different studies (Babiloni 
et al., 2000; McFarland et al., 1997; Mouriño, 2003). SL filtering can be 
done either globally or locally. In the former case, the raw EEG potentials 
are first interpolated using spherical splines of order 2 and then it is taken the 
second spatial derivative which is sensitive to localized sources of electrical 
activity (Perrin et al., 1989, 1990). The second derivative is evaluated only at 
the locations of the desired electrodes. In the latter case, local method, the 
average activity of neighbouring electrodes—normally four—is subtracted 
from the electrode of interest. Normally, the SL is estimated with a high 
number of electrodes. But Babiloni et al. (2001) have shown that, for the 
operation of a BCI, global SL waveforms with either a low or a high number 
of electrodes give statistically similar classification results. Millán et al. 
(2004a, 2004b) compute SL derivations from a few electrodes using local 
methods. Mouriño et al. (2001) compare different ways to compute the SL 
based on a few electrodes. 

Alternatively, raw EEG potentials can be transformed to the common 
average reference (CAR), which consists in removing the average activity 
over all the electrodes. Still another possibility is to use a data-driven 
approach to construct common spatial patterns (CSP), which finds spatial 
filters that are optimal for discrimination of two populations of EEG signals 
(Lemm et al., 2005; Müller-Gerking et al., 1999). CSP is based on the 
simultaneous diagonalization of two matrices—the variance matrices of the 
two populations—and finds directions—i.e., spatial filters—with the biggest 
difference in variance between the two classes. Contrarily to the other spatial 
filtering methods, a band-pass filter focusing on the rhythms of interest is 
applied to the EEG signals before the computation of CSP. 
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3. Hardware 
EEG signals are acquired with a portable acquisition system such as that 
shown in Figure 9. Subjects wear a commercial EEG cap with integrated 
scalp electrodes that covered the whole scalp and are located according to 
the 10/20 international system (Figure 10) or extensions of this system to 
allow recordings from more than 20 electrodes (Figure 11). 

 
Figure 9: Portable EEG system used at the IDIAP Research Institute. It is a 

commercial BioSemi ActiveTwo system 

 
Figure 10: 10/20 international system for electrodes placement (Jasper, 1958) 
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Figure 11: The standard placement of 64 scalp electrodes as an extension to the 

10/20 international system 

EEG signals are normally recorded with respect to an ear reference or with 
respect to a linked-ear reference (average potentials measured in both ear 
lobes). But the use of spatial filters (see Section 2.5) makes the transformed 
potentials reference-free. 
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4. Current Applications 
BCI systems are being used to operate a number of brain-actuated 
applications that augment people’s communication capabilities, provide new 
forms entertainment, and also enable the operation of physical devices. 
There exist virtual keyboards for selecting letters from a computer screen 
and write a message (Birbaumer et al., 1999; Farwell & Donchin, 1988; 
Millán, 2003; Millán et al., 2004a; Obermaier et al., 2003; Scherer et al., 
2004; Wolpaw et al., 2000). Of these systems, the evoked BCI (Farwell & 
Donchin, 1988) has the highest performance. But, as mentioned previously, 
the need for external stimulation makes it less natural to use. Using the 
alternative spontaneous BCI systems, subjects can write a letter in times 
ranging from 22 seconds (Millán et al., 2004a) to 2 minutes (Birbaumer et 
al., 1999). In these approaches, the subject type letter by letter on the basis of 
binary or trinary choices. Initially, the whole keyboard is divided in 
two/three parts. Then, as the classifier embedded into the BCI recognizes the 
part the subject wants to select, the keyboard is successively split in smaller 
parts until a letter is selected. This letter goes to the message and the whole 
process starts over again. As an example, Figure 12 illustrates the operation 
of the virtual keyboard developed by Millán’s lab. 

 

 
Figure 12: Example of virtual keyboard. The figure shows a sequence of frames 

during the writing of a message (from left to right and top down). At the beginning, 
top left panel, the keyboard is divided in three parts, each associated to one of the 

mental tasks and using the same colors as during the training. Once the neural 
classifier recognizes the same mental task three times in a row, the corresponding 
part of the keyboard is selected (top center panel). In this case is the green area, 

which remains shadowed for 3.5 seconds to give the user the possibility to undo the 
selection in case it is wrong. Then, this part is divided again in three (top right 

panel). After a block of this second level is selected, it is still split in three to yield 
the choice among three letters (bottom left panel). The user then selects the letter 
with the red color (h) that is written into the message part and the whole process 

starts over again (bottom center panel). The bottom right panel shows the selection 
of the last letter in the message (reproduced from (Millán, 2003)) 
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Millán (2003) illustrates the operation of a simple computer game, but other 
educational software could have been selected instead. Other “brain games” 
have been developed by Pfurtscheller’s team in Graz and Müller’s team in 
Berlin (personal communications). In Millán’s case, the “brain game” is the 
classical Pacman. For the control of Pacman, it suffices two mental tasks that 
make it turn left of right. Pacman changes direction of movement whenever 
one of the mental tasks is recognized twice in a row. In the absence of 
commands, Pacman moves forward until it reaches a wall, where it stops and 
waits for instructions (see Figure 13). 

 
Figure 13: Example of “brain game”. Here the user controls the classical Pacman 
using only two commands to make it turn left or right. Otherwise, Pacman moves 
forward until it reaches a wall, where it stops (reproduced from (Millán, 2003)) 

On the other hand, it is also possible to make a brain-controlled hand 
orthosis open and close (Pfurtscheller & Neuper, 2001). Wolpaw and 
McFarland (2004) have recently demonstrated how subjects can learn to 
control two independent EEG rhythms and move a computer cursor in two 
dimensions. Despite these achievements, EEG-based BCIs are still 
considered too slow for controlling rapid and complex sequences of 
movements. But recently Millán and coworkers (2004a, 2004b) have shown 
for the first time that asynchronous analysis of EEG signals is sufficient for 
humans to continuously control a mobile robot—emulating a motorized 
wheelchair—along non-trivial trajectories requiring fast and frequent 
switches between mental tasks. Two human subjects learned to mentally 
drive the robot between rooms in a house-like environment visiting 3 or 4 
rooms in the desired order (see Figure 14). Furthermore, mental control was 
only marginally worse than manual control on the same task. A key element 
of this brain-actuated robot is shared control between two intelligent 
agents—the human user and the robot—so that the user only gives high-level 
mental commands that the robot performs autonomously. In particular, the 
user’s mental states are associated with high-level commands (e.g., “turn 
right at the next occasion”) and that the robot executes these commands 
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autonomously using the readings of its on-board sensors. Another critical 
feature is that a subject can issue high-level commands at any moment. This 
is possible because the operation of the BCI is asynchronous and, unlike 
synchronous approaches, does not require waiting for external cues2. The 
robot relies on a behaviour-based controller to implement the high-level 
commands to guarantees obstacle avoidance and smooth turns. In this kind 
of controller, on-board sensors are read constantly and determine the next 
action to take. 

 
Figure 14: One of the users while driving mentally the robot through the different 

rooms of the environment, making it turn right, turn left, or move forward. The 
Khepera robot has 3 lights on top to provide feedback to the user and 8 infrared 
sensors around its diameter to detect obstacles (reproduced from (Millán et al., 

2004a)) 

                                                      
2 As mentioned in Section 2.1, Rebsamen et al. (2006) have recently developed a 
wheelchair controlled with P300 evoked potentials. It should be noted that in this 
approach the user has only the possibility to choose the final destination from a short 
list of possible targets, what takes several seconds, and then the trajectory is 
generated in a fully automatic way. 

18 



____________________________________________________________ Non-Invasive Brain-Machine Interfaces 

5. Foreseen Improvements 
Although these promising first results are attracting significant attention 
from an increasing number of research laboratories around the world, most 
of the issues being explored are related to “augmented communication” 
where fast decision-making is not critical as it is the case for real-time 
control of robotics devices and neuroprosthesis—i.e., control of prosthesis 
and orthesis directly from brain signals. Real-time control of brain-actuated 
devices, especially robots, is the most challenging for BCI and the most 
relevant for space applications. 

While brain-actuated robots have been demonstrated in the laboratory, this 
technology is not yet ready to be taken out and used in real-world situations. 
A critical issue is how to improve the robustness of BCIs with the goal of 
making it a more practical and reliable technology. A first avenue of 
research is online adaptation of the interface to the user to keep the BCI 
constantly tuned to its owner (Buttfield et al., 2006; Millán, 2004; Millán et 
al., 2006). The point here is that, as subjects gain experience, they develop 
new capabilities and change their brain activity patterns. In addition, brain 
signals changes naturally over time. In particular, this is the case from a 
session (with which data the classifier is trained) to the next (where the 
classifier is applied). Thus, online learning can be used to adapt the classifier 
throughout its use and keep it tuned to drifts in the signals it is receiving in 
each session. Preliminary work shows the feasibility and benefits of this 
approach (Buttfield et al., 2006; Millán, 2004; Millán et al., 2006). In 
particular, a significant result is that online adaptation makes it possible to 
complete the task of driving a wheelchair along a corridor while avoiding 
obstacles from the very first trial. 

The second line is the analysis of neural correlates of high-level cognitive 
and affective states such as errors, alarms, attention, frustration, confusion, 
etc. Information about these states is embedded in the EEG together with the 
mental commands intentionally generated by the user. The ability to detect 
and adapt to these states would enable the BCI to interact with the user in a 
much more meaningful way. One of these high-level states is the awareness 
of erroneous responses, whose neural correlate arises in the millisecond 
range. Thus, user’s commands are executed only if no error is detected in 
this short time. Recent results have shown satisfactory single-trial 
recognition of errors that leads to significant improvement of the BCI 
performance (Ferrez & Millán, 2005, 2006). In addition, this new type of 
error potential—which is generated in response to errors made by the BCI 
rather than by the user—may provide with performance feedback that, in 
combination with online adaptation, could allow us to improve the BCI 
while it is being used. 

A third issue is how to get a better picture of electrical activity all across the 
brain with high spatial accuracy without implanting electrodes but rather by 
a non-invasive estimation from scalp EEG signals. Local field potentials 
(LFP) are produced by the electrical activity of small groups of neurons. LFP 
have proven to be as efficient in predicting animal’s behaviour or cognitive 
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states as the information carried by the spike rate of individual neurons 
(Mehring et al. 2003; Pesaran et al., 2002). Recent developments in electrical 
neuroimaging allow the transformation of scalp recorded EEG into estimated 
local field potentials (eLFP) as if they were directly recorded within the 
brain (Grave de Peralta et al., 2004). Non-invasive eLFP has the potential to 
unravel scalp EEG signals, attributing to each brain area its own temporal 
(spectral) activity. Preliminary results have shown significant improvements 
in the classification of bimanual motor tasks using eLFP with respect to 
scalp EEG (Grave de Peralta et al., 2005, 2006). Also, for a couple of 
patients where it was also possible to record intracranial potentials directly, 
eLFP and intracranial potentials had similar predicting power (Grave de 
Peralta et al., 2006). Finally, it is also worth noting that through this 
technique we can also gain a better understanding of the nature of the brain 
activity driving the BCI. 

Still a fourth issue is the nature and role of feedback for brain-actuated 
control. In particular, an open question is the use of multiple modalities of 
feedback (visual, auditory, haptic and vestibular) to accelerate user training 
and facilitate accurate control of the robots. The rationale behind is that it is 
well known that disabled people (and healthy people too) learn better 
manipulation skills (among others) if they are provided with multiple 
sources of feedback, in particular haptic. An additional benefit of the use of 
the haptic feedback is to free visual and auditory attention to follow the 
process the user is controlling. This fact could open the way for a larger use 
of such brain-actuated devices able to preserve the visual and auditory 
processes that are usually engaged in the normal brain surveillance activity. 
In this way, we hope users will get a more precise feeling of the capabilities 
of the robot in undertaking a task as well as on what the robot is doing what 
will facilitate both the acquisition of better mental commands and conveying 
faster corrective mental commands in case of undesired actions by the robot. 
Initial unpublished results seem to indicate that haptic feedback is as 
effective as standard visual feedback for user training. 

Finally, a limiting factor of current EEG-based BCI is the recording 
technology that requires the use of gel to improve the conductivity of the 
electrical signals generated in the brain. This is a cumbersome procedure as a 
proper amount of gel has to be smeared in each electrode. However, recent 
advances in so-called dry electrodes, which only require a good contact with 
the scalp to record brain signals, promise to change the situation in the 
coming years and enable the easy use of a large number of electrodes 
directly integrated in a helmet. 
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6. BCI for Space Applications 
As mentioned before, development of non-invasive brain-controlled robotic 
devices is the most relevant for space applications, where environment is 
inherently hostile and dangerous for astronauts who could greatly benefit 
from direct mental teleoperation of external semi-automatic manipulators. 
Such a kind a brain-actuated control should increase the efficiency of 
astronaut’s activity that is of primary interest as mental commands could be 
sent without any output delays—as it is the case for manual control in 
microgravity conditions. Furthermore, robotics aids would be highly useful 
to astronauts weakened by long stays in microgravity environments. 

In this respect, there is a need to incorporate shared autonomy principles into 
the BCI. In shared control, the intelligent controller relieves the human from 
low level tasks without sacrificing the cognitive superiority and adaptability 
of human beings that are capable of acting in unforeseen situations. In other 
words, in shared control there are two intelligent agents—the human user 
and the robot—so that the user only conveys intents that the robot performs 
autonomously (Sheridan, 1992). Although the Millán’s brain-actuated robot 
had already some form of cooperative control, shared autonomy is a more 
principled and flexible framework. 

But, EEG signals in a microgravity environment may differ from those 
recorded in a normal gravity environment for the same person. As a result, 
the feasibility of BCI for space applications should be tested in microgravity 
conditions and, depending on the results, new solutions should be explored 
that fit better space environments. Examples of those possible alternatives 
for space BCI are specific tasks or cognitive functions that do not suffer 
from microgravity effects, such as vertigo and spatial disorientation, and 
rhythms that subjects can sustain better. 
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7. Future Technologies and Roadmaps for 
BCI 
BCI is a field still in its infancy, whose bit-rate is still far away from other 
interaction modalities such as speech or body movements (e.g., eye tracking, 
gestures). But, as discussed in Section 1, recent experiments with monkeys 
having implanted electrodes in their brain support the feasibility of 
controlling in real time complex devices such as a prosthetic limb directly by 
brain activity. However, given the invasive nature of this approach, the 
challenge is to achieve similar results with non-invasive technologies. 

For this we will need to use portable high-resolution EEG systems (possibly 
in combination with near-infrared spectroscopy, NIRS, that yield 
complementary information and it is also portable) to get detailed 
information on the activity of small cortical areas. It will be then crucial to 
develop real-time algorithms to transform scalp potentials into brain activity 
maps, such as estimated local field potentials (Section 5) and select relevant 
areas of interest for the recognition task. The neural classifier embedded in 
the BCI would work upon these brain maps instead of using EEG features. 

Although the immediate application of BCI is to help physically impaired 
people, its potentials are extensive. Ultimately they may lead to the 
development of truly adaptive interactive systems that, on the one side, 
augment human capabilities by giving the brain the possibility to develop 
new skills and, on the other side, make computer systems fit the pace and 
individual features of their owners. Most probably, people will use BCI in 
combination with other sensory interaction modalities (e.g., speech, 
gestures) and physiological signals (e.g., electromyogram, skin 
conductivity). Such a multimodal interface will yield a higher bit rate of 
communication with better reliability than if only brainwaves were utilized. 
But, in order to do so, it is first necessary to improve the performance of 
BMIs until they reach similar levels to other modalities. On the other hand, 
the incorporation of other interaction modalities highlights a critical issue in 
BCI, namely the importance of filtering out from the recorded brain signals 
non-CNS artifacts originated by movements of different parts of the body. 
Independent component analysis (ICA) is a method for detecting and 
removing such artefacts (Vigário, 1997). 
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